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Introduction 
Mobility-on-demand (MoD) services under the flag of Uber’s disruptive business model have 
made a breakthrough in the way we travel in big cities. New door-to-door mobility options 
have been added to the available options from which a commuter can choose. These new 
transportation systems leverage on information and communication technologies, enabling 
service requests from a smartphone and online payments.  
 
However, urban mobility is just entering a tipping point1 with four mayor innovations in the 
car manufacturing industry coming through: in-vehicle connectivity, electric vehicles, car 
sharing, and autonomous driving. Big firms such as Google and Tesla have started testing their 
autonomous vehicles (AVs) with plans from Google to make them available to the public in 
20202. In addition, smaller competitors like nuTonomy a spinup from MIT has recently 
partnered up with Singapore’s Land Transport Authority (LTA) to deliver a fleet of 
autonomous taxis by 20183. 
 
It is then in the research community outlook, not only to finalise the development of the self-
driving technology, but also address the implications in a broader scale, the city scale. What 
sort of interactions from self-driving and manned vehicles can we expect from a higher 
perspective? Understanding the general panorama of both systems competing in the same urban 
space to service the cities’ travelling needs will make us realise the real contributions of AV’s 

                                                
1 http://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/urban-
mobility-at-a-tipping-point 
 
2 http://www.ibtimes.com/google-inc-says-self-driving-car-will-be-ready-2020-1784150 
3 http://www.digitaltrends.com/cars/nutonomy-driverless-taxi-singapore/ 



in a multi-modal transport setting, and if we can consider AVs as part of the sustainable 
transport ecosystem.  
 
In this perspective we analysed autonomous mobility-on-demand (AMoD) systems/services 
constituted by a fleet of AVs. AMoD has emerged as a promising solution for urban 
transportation. Compared to prevailing systems, AMoD promises sustainable, affordable 
personal mobility through the use of self-driving shared vehicles. For instance, AMoD systems 
are a future prospect to solve the last-mile problem, balance the overall efficiency of the 
transportation network, and due to its autonomy, overcome the fundamental load balancing 
problem of conventional mobility-on-demand services. 
 
Hence, the current case study analyses the interactions and evolution of three players: the 
commuters, the traditional manned-vehicle services (e.g. taxi), and the inclusion of an AMoD 
service. All parties are represented as agents with their own utility/fitness functions they seek 
to optimise. The simulation will output the emergent behaviour derived from the different 
dynamics and interactions of the three players and their inherent evolution towards their 
optimisation in time, cost, and space. This will ultimately help us understand from the city level 
perspective the interactions between self-driving and man-driven vehicles and to assess under 
what conditions AMoD systems are a sustainable option. 
 
 
Problem Definition 
Parting from the travel demand data generated in the New York City Taxi and Uber datasets, 
we would like to understand the indirect interactions of AMoD systems and conventional 
transportation services (taxi) on servicing the NYC’s travel demand. Find the optimal 
parameters and operation policies for an AMoD fleet and analyse the evolution of users’ choice 
in a mixed-traffic setting. From the fleet management perspective, find out the optimal number 
of dispatch units needed to cover the demand of NYC, and find the optimal coordinated 
dispatching, route choice, and rebalancing policies for the AMoD fleet. Furthermore, we would 
like to explore under what market penetration rates, are AMoD systems improving the overall 
transportation performance, and if the inclusion of AVs can be considered part of sustainable 
solution. 
 
Hence, the aims of the proposed case scenario are two-fold: 

1) Explore suitable fleet management strategies for AMOD systems. Find optimal control 
strategies for request assignment, route choice and the rebalancing problem. And also 
on the economic dimension: fleet sizing and financial analyses. 

2) On a higher level (city level) assess the interactions with manned vehicles and how the 
competition between both services affects the user’s choice and the transportation 
system overall performance. 

 
 
 
 
 
 
 
 
 
 



Concept Transferability 
 

1. Multi-agent based simulations 
 
Agent-based models (ABM) from the Complex Systems domain are computational models to 
simulate the actions and interactions of autonomous agents with a view of assessing their 
effects on the system as a whole. In the concept of multi-agent simulations, the goal is to search 
for explanatory insight into the collective behaviour of agents obeying simple rules. They are 
a type of micro scale model that simulates the simultaneous operations and interactions of 
multiple agents in an attempt to re-create and predict the appearance of complex phenomena. 
In this sense, a key notion is that simple behavioural rules generate complex behaviour. 
 
For large-scale transportation systems, activity based models can be implemented through 
multi –agent base simulations. Agents represent people willing or in need to travel to perform 
activities. Thus, each agent has a set of daily activities. They are able to make their own 
decisions such as route choice, mode choice and time of departure. In the case study, user 
agents, will be represented by the demand generated from the NYC Taxi and Uber datasets. 
The study will explore the evolution of the agents’ decision towards which mode of transport 
maximises their own utility (mainly driven by waiting time and cost) between AMoD services 
and conventional personal mobility services (e.g. Taxis, Uber). 
 
For the supply side, we need another type of agents to represent the AMoD fleet and the fleet 
of Taxis. On a mesoscopic level the main difference in the salient behaviour between the two 
is not the model but the control strategies (e.g. closed-loop, coordinated, intelligent) for the 
assignment, routing and rebalancing tasks. Hence, the dynamics and control of an AMoD 
system can be divided in two tasks: firstly, when an AMoD unit is active, the route can be 
selected to balance the overall system performance by routing vehicles through less-congested 
roads; and secondly, when the unit is not in use (i.e. idle state), the AMoD system can 
redistribute AVs to better meet demand through an automated balancing strategy. These control 
strategies should be built along the coordination capabilities of the AV fleet to respond to a 
diversity of stochastic events in an uncertain and complex setting. Interactions between the 
AMoD, the conventional taxi service and the NYC travel demand will result in emergent 
phenomena such as traffic jams. 
 
For this task, the case study can be implemented in one of the two most widely used available 
open frameworks to develop multi-agent transportation simulations on a large scale: MATSim4 
(java-based) or SimMobility5 (c++-based). 
 
 

2. Reinforcement Learning  
 
Once the multi-agent scenario has been set, the second challenge to be solved is the fleet 
management strategy implementation for the AMoD system. By leveraging on the self-driving 
technology and coordinated algorithms, the control strategies for the AMoD system make the 
significant difference in the mesoscopic simulation in comparison to the fleet of conventional 
taxis. Hence, to find optimal policies for the AMoD fleet management tasks, routing and 

                                                
4 http://www.matsim.org/ 
5 https://its.mit.edu/research/simmobility 



rebalancing, a promise approach is the Reinforcement Learning (RL) paradigm in the context 
of optimal control, and specifically, multi-agent reinforcement learning. 
 
Reinforcement Learning is very closely related to the theory of classical optimal control, as 
well as dynamic programming, stochastic programming, simulation-optimization, stochastic 
search, and optimal stopping (Powell, 2012). Both RL and optimal control address the problem 
of finding an optimal policy (often also called the controller or control policy) that optimises 
an objective function (i.e., the accumulated cost or reward), and both rely on the notion of a 
system being described by an underlying set of states, controls and a plant or model that 
describes transitions between states. However, optimal control assumes perfect knowledge of 
the system’s description in the form of a model (i.e., a function T that describes what the next 
state of the robot will be given the current state and action). For such models, optimal control 
ensures strong guarantees which, nevertheless, often break down due to model and 
computational approximations. In contrast, reinforcement learning operates directly on 
measured data and rewards from interaction with the environment. Reinforcement learning 
research has placed great focus on addressing cases which are analytically intractable using 
approximations and data-driven techniques. The goal of reinforcement learning is to discover 
an optimal policy π∗ that maps states (or observations) to actions so as to maximize the 
expected return J, which corresponds to the cumulative expected reward. (Kober, Bagnell, & 
Peters, 2013) 
 
Why Reinforcement Learning? 
For the case study, Reinforcement learning is an appropriate method since we want to find 
optimal policies for routing and the rebalancing problem under complex scenarios, for which 
we don’t possess a model of the world. Thus, from the events experienced by the fleet of AVs, 
we would like the AMoD systems to learn what are the best actions under different stochastic 
conditions as to optimised travel times, energy consumption and maximised profit.  
 
 
Data Availability 
 
In order to derive the travel demand for New York City, two open datasets are available to set 
up the initial conditions for our multi-agent simulation framework. 
 

• NYC Taxi Data 
 
The official TLC trip record dataset contains data for over 1.1 billion taxi trips from January 
2009 through June 2015, covering both yellow and green taxis. Each individual trip record 
contains precise location coordinates for where the trip started and ended, timestamps for when 
the trip started and ended, plus a few other variables including fare amount, payment method, 
and distance travelled. 
 
Link: https://github.com/toddwschneider/nyc-taxi-data 
 

• Uber Data 
 
Data covering nearly 19 million Uber rides in NYC from April–September 2014 and January–
June 2015. In particular Uber provides time and location for pickups only, not drop offs.  
 
Link: https://github.com/fivethirtyeight/uber-tlc-foil-response 



Literature Review 
 
Modelling, simulation and control of AMoD systems 
 
Autonomous on-demand (AMoD) systems, constitute a transformative and rapidly developing 
mode of transportation wherein robotic, self-driving vehicles transport passengers in a given 
environment. Specifically, Pavone (2014) addresses AMoD systems along three dimensions: 
(1) modeling, that is analytical models capturing salient dynamic and stochastic features of 
customer demand, (2) control, that is coordination algorithms for the vehicles aimed at 
throughput maximization, and (3) economic, that is fleet sizing and financial analyses. 
 
Pavone (2014), Zhan and Pavone (2014), Zhang, Spieser, Frazzoli, and Pavone (2015) propose 
a dedicated model of an AMoD system, in which a spatial queue model is used to manage the 
stochastic travel requests generated in a defined map. And thus the problem to find an optimal 
policy for the AV’s to serve the requests is turn into an operations research problem: joint task 
allocation and scheduling problem. They proposed a closed-loop control policy based on the 
Dynamic Traveling Repairman problem and on the Dynamic Traffic Assignment problem. 
Firstly, they transform the AMoD system into a closed Jackson network with respect to the 
vehicles, where the equilibrium distribution of a queueing network is possible to compute as 
the product has a product-form solution. Secondly, to rebalance the vehicles to ensure even 
vehicle availability, the strategy was to add virtual customer streams. The model and control 
strategy was tested for the cities of New York and Singapore.  
 
A more recent approach for the AV fleet control is the one by Zhang, Rossi, and Pavone (2016). 
They proposed a model predictive control (MPC) from the control theory domain for a station-
based management of an AMoD system. They firstly built a discrete-time model of the 
dynamics of the AV fleet, and secondly designed a model predictive control algorithm for the 
optimal coordination of the AMoD system. At each optimisation step, the vehicle scheduling 
and routing problem is solved as a mixed integer linear program where the decision variables 
are binary variables representing whether a vehicle will wait at a station, service a customer, 
or rebalance to another station. One of the major contributions was the inclusion of charging 
constraints associated with using electric vehicles. 
 
However, while Pavone (2014), Zhan and Pavone (2014), Zhang, Spieser, Frazzoli, and Pavone 
(2015) work was tested in large-scale, the control approach cannot cope with realistic 
phenomenon such as congestion and interaction with human-driven vehicles. They conclude 
that future research should come up with efficient control algorithms for increasingly more 
realistic models. On the other hand, the model predictive control from Zhang, Rossi, and 
Pavone (2016) although it takes into account more realistic constraints (e.g. charging stations), 
it still needs to be scale up for city-wide systems, since the computational complexity of the 
mixed integer linear program scales exponentially with the number of stations and vehicles. 
Moreover, they conclude that the inclusion of the congestion aspect and optimal coordination 
algorithms in an intermodal system are a matter of future research.  
 
With the proposal of a multi-agent simulation framework, the case study can address the 
limitations described with a city-scale multimodal platform, in which the interactions from 
human-driven vehicles and AVs, as well as congestions are capable to emerge. As for the 
AMoD’s control strategy the inclusion of a Reinforcement Learning (RL) approach would 
account for the uncertainties in the real world, for both the routing and rebalancing policies. 



RL paradigm leverages the robotics domain and capabilities of the AV fleet, where it has been 
proved successful for the solution of optimal problems under uncertain environments.  
 
 
Agent-based simulation for AMoD 
 
For large-scale transportation systems, the inclusion of a fleet of taxis and autonomous taxis as 
another class of agents has been already implemented in both MATSim and SimMobility. Hörl, 
Erath, and Axhausen (2016) have included the modelling infrastructure for the simulation of 
AVs in MATSim. As for SimMobility, Marczuk et al. (2015) included a module for AVs in 
the short-term simulator, which simulates the individual decisions and the transportation 
network at the sub-second level. In both cases they have initially tested the simple cases for the 
fleet management tasks: FIFO service and nearest assignation, routing according to the network 
free speeds, return to the original station or wait at drop-off rebalance strategies. However, the 
bases are settled for the proposal and inclusion of more efficient control algorithms in the large-
scale, multimodal setting offered by both platforms.  
 
 
Reinforcement Learning 
 
Even though a formal control strategy for an AMoD system through reinforcement learning 
has not been proposed yet, several studies can be used as starting point for the case study 
development. 
 
As an anchor point, the work by Bazzan (2008) on opportunities for multiagent systems and 
multiagent reinforcement learning in traffic control, highlights how can open problems in 
traffic enginnering can be approach through coordination algorithms and reinforcement 
learning for multiagent systems. Later on, Tavares and Bazzan (2012) proposed a 
reinforcement learning approach for route choice in traffic scenarios, which relies solely on 
drivers’ experience to guide their decisions. Experimental results demonstrate that reasonable 
travel times can be achieves and vehicles can be distributed themselves over the road network 
avoiding congestion. Along the routing choice line, Cox, Jennings, and Krukowski (2013) 
adapted the Q-Routing algorithm, originally developed for packet routing in communication 
networks and inspired by the Q-learning algorithm, for an adaptive routing strategy of AVs 
shortest path planning in congested networks. 
 
Another focus of reinforcement learning in vehicle trajectories is the optimisation of a taxi 
route to maximised the revenue (Wang and Lampert, 2014). Although the optimisation process 
is set for one vehicle, if extended to a fleet of taxis, the overall fleet’s efficiency could be 
greatly improved (less particles emitted), drivers would minimise their vacancy time and 
working hours, and passenger could see better Taxi coverage. 
 
In the case study, the main motivation towards using RL is to leverage the capabilities of the 
AV fleet when encounter with a networked, heterogeneous, stochastic decision problem with 
uncertain information. In a coordinated and self-organised manner, RL is an important piece 
of the puzzle to learn optimal policies under uncertain events and complex scenarios. In 
addition, this will allow us to explore the possibility to balance the global transportation system 
utility using the AMoD system. 
 
 



Research Questions 
 

• Would AMoD systems decrease congestion? In general, do AMoD systems represent 
an economically viable, sustainable, and societally-acceptable solution to the future of 
personal urban mobility? 

 
• Can the inclusion of an AMoD system be used to reach the transport system overall 

optimal performance?  
 

• For which percentage of AVs inclusion can we start having increments in the overall 
efficiency of the network without sacrificing individual utility too much?  

 
• How does the user’s choice evolve when an AMoD system is included based on lower 

pick-up times, but for some penetration rates of AVs longer travel times?  
 

• In the competition game between AMoD vs manned MoD services, what is the user’s 
expectancy on improved waiting and travel times? Based on these factors, how do the 
users’ choice evolve in terms of the preferred service selection? 

 
• What is an optimal fleet size for the AMoD system under competition for a fixed 

demand? (see Boesch, Ciari, & Axhausen, 2016 for fleet size and quality of service)  
 

• What is an optimal route choice algorithm for a fleet of AVs? 
 

• What is an optimal rebalancing strategy? What are the trade-offs between different 
strategies? 

 
 
 
Research Output 
 
A platform to evaluate coordinated control strategies for AMoD systems with complex 
stochastic interactions in a large-scale multimodal setting.  
 
 
Future research possibilities 
 

1. Trip sharing and autonomous vehicles. How to include efficient algorithms and 
simulations of sharing trips. 

 
2. Exploring pricing mechanism boundaries for the optimality of both service providers 

(cost) and users (cost and waiting time). 
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